منابع مشابه
Classical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملGeneralized multidimensional Hilbert transforms in Clifford analysis
During the last fifty years, Clifford analysis has gradually developed to a comprehensive theory offering a direct, elegant, and powerful generalization to higher dimension of the theory of holomorphic functions in the complex plane. In its most simple but still useful setting, flat m-dimensional Euclidean space, Clifford analysis focusses on the so-called monogenic functions, that is, null sol...
متن کاملHilbert transforms in yukawan potential theory.
If H denotes the classical Hilbert transform and Hu(x) = v(x), then the functions u(x) and v(x) are the values on the real axis of a pair of conjugate functions, harmonic in the upper half-plane. This note gives a generalization of the above concepts in which the Laplace equation Deltau = 0 is replaced by the Yukawa equation Deltau = mu(2)u and in which the Cauchy-Riemann equations have a corre...
متن کاملUniform Bounds for the Bilinear Hilbert Transforms
It is shown that the bilinear Hilbert transforms Hα,β(f, g)(x) = p.v. ∫ R f(x− αt)g(x− βt) dt t map Lp1(R) × Lp2(R) → Lp(R) uniformly in the real parameters α, β when 2 < p1, p2 < ∞ and 1 < p = p1p2 p1+p2 < 2. Combining this result with the main result in [9], we deduce that the operators H1,α map L2(R)×L∞(R) → L2(R) uniformly in the real parameter α ∈ [0, 1]. This completes a program initiated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1975
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1975-0377598-5